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ABSTRACT 
 

Metaheuristic algorithms mostly consist of some parameters influencing their performance 

when faced with various optimization problems. Therefore, this paper applies  Multi-Stage 

Parameter Adjustment (MSPA), which employs Extreme Latin Hypercube Sampling 

(XLHS), Primary Optimizer, and Artificial Neural Networks (ANNs) to a recently 

developed algorithm called the African Vulture Optimization Algorithm (AVOA) and a 

well-known one named Particle Swarm Optimization (PSO) for tuning their parameters. The 

performance of PSO is tested against two engineering and AVOA for two structural 

optimization problems, and their corresponding results are compared to those of their default 

versions. The results showed that the employment of MSPA improved the performance of 

both metaheuristic algorithms in all the considered optimization problems. 
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1. INTRODUCTION 
 

Optimization plays a pivotal role in civil engineering and has been widely applied across 

various disciplines, including engineering design, computer science, and economics, where 

it is utilized to address complex problems that lack efficient solutions [1]. Numerous 

optimization algorithms have been proposed to enhance problem-solving efficiency in 

computational contexts, particularly when tackling challenging structural and engineering 

design problems [2]. Metaheuristic algorithms, in particular, have emerged as effective tools 
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for solving these problems due to their ability to explore vast solution spaces in search of 

near-optimal solutions. However, the success of metaheuristics in structural optimization 

tasks is contingent upon the careful tuning of their initial parameters, a process that often 

demands significant time and effort [3]. The initialization of these parameters directly 

influences the algorithm's performance, determining the balance between exploration and 

exploitation of the search space, which is crucial for achieving optimal results [4]. 

Over the years, substantial research has been dedicated to understanding and refining the 

parameterization of various metaheuristic algorithms, such as Particle Swarm Optimization 

(PSO) [5,6], Ant Colony Optimization (ACO) [7,8], and Artificial Bee Colony (ABC) 

[9,10], among others. Each of these algorithms has specific parameters that require 

adjustment to enhance performance in specific applications. The significance of effective 

parameter tuning has led to the development of frameworks that optimize this process, such 

as the Multi-Stage Parameter Adjustment (MSPA) framework [11], which has been 

successfully employed to improve metaheuristics' efficiency in solving structural 

optimization problems. Despite this, achieving the ideal parameter configuration remains a 

labor-intensive and complex task, as the search for optimal values can vary greatly 

depending on the nature of the problem being addressed. 

In this context, this paper applies the MSPA framework for parameter tuning of two 

metaheuristic algorithms, namely Particle Swarm Optimization and African Vultures 

Optimization Algorithm [12]. The proposed framework, which involves four stages: data 

generation, parameter optimization, machine learning-based training, and final optimization, 

leverages the advantages of Extreme Latin Hypercube Sampling (XLHS) for efficient 

exploration of search spaces and the predictive power of machine learning algorithms for 

parameter fine-tuning. By integrating machine learning with metaheuristics, this method 

offers the potential for substantial improvements in the design and optimization of 

engineering structures. This paper aims to explore the application of this framework to 

various engineering and structural optimization problems, demonstrating its efficacy in 

achieving enhanced performance and more efficient parameter tuning. 

The structure of this paper is as follows: Section 2 provides a brief overview of Multi-

Stage Parameter Adjustment. Section 3 delves into the description of the considered 

algorithms for parameter adjustment and optimization. Section 4 presents a series of case 

studies to highlight the effectiveness of the proposed approach, while Section 5 concludes 

the study with a summary of key findings. 

 

 

2. MULTI-STAGE PARAMETER ADJUSTMENT (MSPA) 
 

This study employs the recently developed Metaheuristic Parameter Adjustment (MSPA) 

framework, which enhances metaheuristic optimization performance through systematic 

parameter tuning [11]. The MSPA framework integrates three key components: Extreme 

Latin Hypercube Sampling (XLHS), a Primary Optimizer, and Machine Learning techniques 

for metaheuristic parameter optimization. The initial phase involves data generation using 

XLHS, a novel sampling method introduced by Kaveh and Eskandari [11]. 

Extreme Latin Hypercube Sampling (XLHS) derives its name from its conceptual 

foundation in Latin Hypercube Sampling (LHS) [13], yet it introduces an advanced 
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partitioning strategy to improve search space coverage. Unlike conventional approaches 

such as Full Factorial Design (FFD) and its variants, which are predominantly suited for 

discrete variables [14], XLHS ensures comprehensive exploration of the parameter space 

while simultaneously producing a robust dataset suitable for machine learning applications. 

The methodology involves segmenting the parameter space into distinct subspaces, followed 

by the strategic placement of sample points to achieve optimal coverage across all possible 

combinations. This feature is particularly beneficial in scenarios requiring high-quality 

training data for predictive modeling. Figure 1 demonstrates the XLHS approach in a two-

dimensional space, where the domain is partitioned, and 20 sample points are randomly 

generated within each subspace to form the initial population for subsequent optimization 

runs. 

Following the sampling phase, MSPA utilizes a Primary Optimizer, a metaheuristic 

algorithm with fixed parameters, such as Genetic Algorithm (GA) [15] or Colliding Bodies 

Optimization (CBO) [16], to optimize the parameters of the secondary (main) metaheuristic. 

In this work, two primary optimizers are employed: a hybrid CBO-GA algorithm, as 

proposed in [17], and a standard GA. The procedural steps of these optimizers are detailed in 

Figures 2 and 3. 

 

 
Figure 1: Extreme Latin Hypercube Sampling 

 

Artificial Neural Networks (ANNs) [18,19], illustrated in Figure 4, are robust 

computational tools extensively applied in civil engineering, particularly in structural 

optimization [20]. Additionally, ANNs have been widely utilized for predictive modeling in 

structural engineering [21]. In this study, ANNs are developed to forecast optimal 

parameters, followed by structural optimization. For a comprehensive exposition, the step-

by-step process is delineated in Figure 5. 

 

 

3. METAHEURISTIC ALGORITHMS 
 

This research focuses on tuning two metaheuristic algorithms, Particle Swarm Optimization 

(PSO), selected for its broad applicability, and the African Vulture Optimization Algorithm 

(AVOA), using the MSPA framework for optimal design problems. Subsequently, the tuned 



A. Kaveh and A. Eskandari 

 

262 

variants are benchmarked against their original counterparts. A concise overview of these 

algorithms is provided below. 
 

 
Figure 2: Flowchart of CBO-GA 

 

 
Figure 3: Flowchart of GA 

 

 
Figure 4: Structure of an ANN 

 

3.1. African Vulture Optimization Algorithm (AVOA) 

Introduced by Abdollahzadeh et al. [12] in 2021, AVOA is a bio-inspired metaheuristic 

algorithm that emulates the foraging and competitive behaviors of African vultures. The 

algorithm effectively balances exploration and exploitation by simulating vultures' 

interactions around food sources (carrion). Operating within a population-based framework, 

AVOA employs competitive mechanisms among agents to converge toward optimal 
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solutions [22]. Figure 6 outlines the core principles of AVOA, aligning them with vulture 

behavior, while Table 1 presents the corresponding mathematical formulations. 
 

 
Figure 5: Workflow of MSPA 

 

 

3.2. Particle Swarm Optimization (PSO) 

Developed by Eberhart and Kennedy [5], Particle Swarm Optimization (PSO) is a 

stochastic, population-based optimization technique inspired by the collective motion of bird 

flocks or fish schools. The algorithm initializes a swarm of particles distributed randomly 

across the search space. Each particle navigates the search domain via velocity vectors, 

dynamically adjusted based on three factors: 

1. The particle’s personal best position (𝑝𝑏𝑒𝑠𝑡) 

2. The global best position (𝑔𝑏𝑒𝑠𝑡) attained by the swarm 

3. The particle’s current velocity 

The position update for particle 𝑖 at iteration (𝑡 + 1) follows these equations: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑑𝑣𝑖(𝑡 + 1) (1) 

𝑑𝑣𝑖(𝑡 + 1) = 𝜔𝑑𝑣𝑖(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡)𝑥𝑖(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡(𝑡)𝑥𝑖(𝑡)) (2) 

 

where: 

• 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡) denote the position and velocity of particle 𝑖 at iteration 𝑡. 

• 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 represent the particle’s local best and the swarm’s global best 

positions, respectively. 

• 𝑟1,𝑟2 are uniformly distributed random numbers in [0,1][0,1]. 

• 𝑐1,𝑐2 are acceleration coefficients. 

• 𝜔 is the inertia weight governing momentum retention. 
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Figure 6: Flowchart of African Vulture Optimization Algorithm 
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Table 1: AVOA equations 

Num. Equation Description 

1 𝑅(𝑖) = {
𝐵𝑒𝑠𝑡 𝑣𝑢𝑙𝑡𝑢𝑟𝑒 1   𝑖𝑓   𝑝𝑖 = 𝐿1

𝐵𝑒𝑠𝑡 𝑣𝑢𝑙𝑡𝑢𝑟𝑒 2   𝑖𝑓   𝑝𝑖 = 𝐿2
 

Determining the best 

vulture in any group 

2 𝑃𝑖 =
𝐹𝑖

∑ 𝐹𝑖
𝑛
𝑖=1

 
Roulette wheel 

selection 

3 𝑡 = ℎ × (sin𝑤 (
𝜋

2
×

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖

𝑚𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) + 𝑐𝑜𝑠 (

𝜋

2
×

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖

𝑚𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) − 1) 

Vultures’ rate of 

starvation 

4 𝐹 = (2 × 𝑟𝑎𝑛𝑑1 + 1) × 𝑧 × (1 −
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑚𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) + 𝑡 

Vultures’ satiety 

status 

5 𝑃(𝑖 + 1) = {
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)     𝑖𝑓  𝑃1 ≥ 𝑟𝑎𝑛𝑑𝑝1

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8)     𝑖𝑓  𝑃1 < 𝑟𝑎𝑛𝑑𝑝1

 Exploration 

6 𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐷(𝑖) × 𝐹 
Exploration #1 

7 𝐷(𝑖) = |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| 

8 𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐹 + 𝑟𝑎𝑛𝑑2 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑏) Exploration #2 

9 𝑃(𝑖 + 1) = {
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10)     𝑖𝑓  𝑃2 ≥ 𝑟𝑎𝑛𝑑𝑝2

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13)     𝑖𝑓  𝑃2 < 𝑟𝑎𝑛𝑑𝑝2

 Exploitation 

10 𝑃(𝑖 + 1) = 𝐷(𝑖) × (𝐹 + 𝑟𝑎𝑛𝑑4) − 𝑑(𝑡) 
Food competition 

11 𝑑(𝑡) = 𝑅(𝑖) − 𝑃(𝑖) 

12 

𝑆1 = 𝑅(𝑖) × (
𝑟𝑎𝑛𝑑5 × 𝑃(𝑖)

2𝜋
) × cos(𝑃(𝑖)) 

𝑆2 = 𝑅(𝑖) × (
𝑟𝑎𝑛𝑑6 × 𝑃(𝑖)

2𝜋
) × sin(𝑃(𝑖)) 

Rotating flight of 

vultures 

13 𝑃(𝑖 + 1) = 𝑅(𝑖) − (𝑆1 + 𝑆2) 

14 𝑃(𝑖 + 1) = {
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (16)     𝑖𝑓  𝑃3 ≥ 𝑟𝑎𝑛𝑑𝑝3

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17)     𝑖𝑓  𝑃3 < 𝑟𝑎𝑛𝑑𝑝3

 
Exploitation 

(second phase) 

15 
𝐴1 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) −

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) × 𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑖) − 𝑃(𝑖)2
× 𝐹 

𝐴2 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) −
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) × 𝑃(𝑖)

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑖) − 𝑃(𝑖)2
× 𝐹 

Accumulation of 

several types of 

vultures over the 

food source 
16 𝑃(𝑖 + 1) =

𝐴1 + 𝐴2

2
 

17 𝑃(𝑖 + 1) = 𝑅(𝑖) − |𝑑(𝑡)| × 𝐹 × 𝐿𝑒𝑣𝑦(𝑑) Aggressive 

Competition for 

Food using Levy 

flight 18 𝐿𝐹(𝑑) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

   ,   𝜎 = (
Γ(1 + 𝛽) × sin (

𝜋𝛽
2

)

Γ(1 + 𝛽2) × 𝛽 × 2 (
𝛽 − 1

2
)
)

1
𝛽
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4. NUMERICAL EXAMPLES 
 

In this section, various numerical examples, including engineering and structural 

optimization problems, are presented to evaluate the employment of the MSPA in improving 

the performance of the considered metaheuristic algorithms. The parameters of both 

algorithms, their ranges, and their suggested values, which were tuned employing the 

MSPA, are represented in Table 2. The constrained engineering design problems with 

continuous variables comprise tension/compression spring design and tree bar truss design. 

The structural constrained optimization examples with continuous variables are the 10-bar 

planar truss and the 25-bar transmission tower. To have a fair comparison, each of the 

default and tuned algorithms is executed 30 times independently, and their best cost, worst 

cost, mean, and standard deviation were obtained. Moreover, the best design related to the 

best cost of each is presented and compared to one another. The constraints are implemented 

employing the penalty function.  

 
Table 2: Range and suggested values of the parameters 

Algorithm Parameter Indicator min max Suggested   

AVOA 

L1 First Best Vulture Selection 0 1 0.8 

[22] 

L2 Second Best Vulture Selection 0 1 0.2 

w Exploration or Exploitation Selection 2 3 2.5 

P1 Exploration Phase 0 1 0.6 

P2 First Exploitation Phase 0 1 0.4 

P3 Second Exploitation Phase 0 1 0.6 

PSO 

A1 Inertia weight (velocity impact) 0.8 1.2 1  

A2 Damping ratio 0 1 0.99  

A3 c1 (cognitive parameter)  1 3 2  

A4 c2 (social parameter)  1 3 2  

 

The regression plots for the ANN-PSO (Figure 7) and ANN-AVOA (Figure 8) models 

demonstrate robust predictive accuracy, as evidenced by their near-perfect coefficients of 

determination (R = 0.995 and R = 0.98855, respectively). Both models exhibit tight 

clustering of data points along the ideal fit line (Y = T), with minimal deviation for the 

±20% bounds (𝑌 =  0.8𝑇 and 𝑌 =  1.2𝑇). This indicates high fidelity in parameter tuning, 

where the ANN successfully captures the nonlinear relationships between input variables 

and optimized outputs. The consistency across training, validation, and test subsets confirms 

negligible overfitting, suggesting generalizability to unseen data. For ANN-PSO, the 

marginally higher R-value highlights slightly superior convergence stability compared to 

ANN-AVOA, though both achieve engineering-grade precision. 

The output distributions (Figure 8) reveal that ANN-AVOA maintains strong agreement 

with target values across a range (0.5–2.5), with no systematic bias. However, minor scatter 

at higher targets (Y ≥ 2) suggests localized sensitivity to parameter thresholds, possibly due 

to AVOA’s adaptive exploration-exploitation balance. In contrast, ANN-PSO’s tighter error 

bounds (Figure 7) imply more uniform performance, aligning with PSO’s gradient-aware 

particle dynamics. Both models’ adherence to the ±20% tolerance bands underscores their 

reliability for metaheuristic hyperparameter optimization, with ANN-PSO offering 

marginally better precision for high-stakes applications requiring stringent error control. 
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Figure 7: Regression for Training, Validation, and Test of the ANN–PSO 

 

 
Figure 8: Regression for Training, Validation, and Test of the ANN–AVOA 

 

4.1. Tension/compression spring design 

 The initial problem at hand revolves around the endeavor to minimize the weight of the 

spring, as visually depicted in Figure 9, while subjected to specified constraints. These 

constraints encompass outside diameter thresholds, frequency limitations, minimum 

deflection requirements, and shear stress. This design problem was initially described by 

Belegundu et al. [23]. The problem has three distinct design variables, namely 𝑑 or 𝑥1 

(representing wire diameter), 𝐷 or 𝑥2 (denoting coil diameter), and 𝑁 or 𝑥3 (indicating the 

number of active coils). The ensuing mathematical model represents the 
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tension/compression spring design problem. 

 

Consider �⃗⃗� = [𝑥1, 𝑥2, 𝑥3] = [𝐷, 𝑑, 𝑁] 

Minimize 𝑓𝑐𝑜𝑠𝑡(�⃗⃗� ) = (𝑥3 + 2)𝑥2𝑥1
2 

Subjected to: 

𝑔1(�⃗⃗� ) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(�⃗⃗� ) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 ≤ 0 

𝑔3(�⃗⃗� ) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(�⃗⃗� ) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0 

0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 1.3, 2 ≤ 𝑥3 ≤ 15 

(3) 

 

 

 
Figure 9: Tension/Compression Spring 

 

As can be observed in Table 3, which provides the statistical results of default and 

adjusted PSO for the tension/compression spring, after parameter adjustment, PSO could 

show better performance in all aspects, such as best and worst cost, average, and standard 

deviation (almost 4%, 19%, 8.5%, and 65% improvement, respectively. Besides, its 

convergence rate was enhanced so that it could reach a better cost sooner, as shown in 

Figure 10. 

 
Table 3: Comparison of Statistical Results and Best Designs for Spring Design 

 Cost Best Design 
 Best Worst Mean Std. x1 x2 x3 

Default 0.01318178 0.017638125 0.014259806 0.001161063 0.057186966 0.503976707 5.997780213 

Tuned 0.012665233 0.014344222 0.013050625 0.000408962 0.051694801 0.356855839 11.28087402 
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Figure 10: Performance Comparison for Spring Design 

 

4.2. Three-bar truss design 

This benchmark within the realm of structural engineering was initially posited by [24]. 

As depicted in Figure 11, the truss structure exhibits a triad of bar elements arranged 

symmetrically. The design variables under scrutiny pertain to the cross-sectional areas of 

these elements 𝐴1 and 𝐴2 as 𝑥1 and 𝑥2. The primary aim of this endeavor is to ascertain the 

structure's minimal weight, all while adhering to the stress constraints. The mathematical 

model of this optimization problem is thus articulated as follows. 

 

Consider �⃗⃗� = [𝑥1, 𝑥2] = [𝐴1, 𝐴2] 

Minimize 𝑓𝑐𝑜𝑠𝑡(�⃗⃗� ) = (2√2𝑥1 + 𝑥2) × 𝑙 

Subjected to: 

𝑔1(�⃗⃗� ) =
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0 

𝑔2(�⃗⃗� ) =
1

𝑥1 + √2𝑥2

𝑃 − 𝜎 ≤ 0 

𝑔3(�⃗⃗� ) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0 

𝐷 = 100 𝑐𝑚, 𝑃 = 2𝑘𝑁/𝑐𝑚2, 𝜎 = 2𝑘𝑁/𝑐𝑚2   and  0 ≤ 𝑥1, 𝑥2 ≤ 1 

(4) 
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Figure 11: Three-Bar Truss 

 

Based on the obtained results of the tree bar truss in Table 4, the application of parameter 

adjustment resulted in a better performance; however, this improvement is not that 

significant in the best cost, but it is remarkable in the standard deviation, which was 

enhanced by up to 83.3 %. Furthermore, the convergence of the adjusted PSO was better 

after almost 50 iterations, as depicted in Figure 12. 

 
Table 4: Comparison of Statistical Results and Best Designs for Three-Bar Truss Design 

 Cost Best Design 
 Best Worst Mean Std. x1 x2 

Default 263.89584500 263.89943151 263.89617708 0.00074472 0.78862814 0.40838122 

Adjusted 263.89584338 263.89622776 263.89595676 0.00012401 0.78867291 0.40825459 

  

 
Figure 12: Performance Comparison for Three-Bar Truss Design 
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4.3. The 10-bar planar truss 

The first structural optimization problem under investigation pertains to a planar truss. 

The arrangement of the 10-bar truss structure is illustrated in Figure 13, while Table 5 

provides an overview of the design parameters. A singular loading condition, characterized 

by P = 100 kips, is imposed upon the structure. 

 

 
Figure 13: The 10-bar Planar Truss 

 
Table 5: Design parameters of the 10-bar planar truss 

Property Value 
Number of design variables  10 

Mass density 0.1 lb/in3 

Elastic modulus 10,000 ksi 

Allowable range for the cross-sectional area 0.1–35 in2 

Allowable stresses for all members ±25 ksi 

Allowable nodal displacements ±2 in 

 

The comparative analysis of the 10-bar planar truss optimization using both the default 

AVOA and the AAVOA (tuned via MSPA) reveals significant improvements in structural 

efficiency and algorithmic reliability. As illustrated in Table 6, AAVOA achieved a superior 

best weight of 5060.958 lb compared to AVOA’s 5070.249 lb, alongside a lower mean 

weight (5206.486 lb vs. 5430.624 lb) and reduced standard deviation (222.5627 vs. 

386.6023), highlighting its enhanced consistency and convergence. Figure 15 further 

demonstrates that AAVOA maintains elemental stresses within allowable limits 

(tensile/compressive) more effectively, with stress ratios consistently below the 0.8 

threshold, indicating optimal material utilization. The nodal displacement ratios in Figure 16 

corroborate this, showing AAVOA’s ability to minimize deformations while adhering to 

constraints. 

The search history, as represented in Figure 14, underscores AAVOA’s refined 

exploration-exploitation balance, with 30 independent runs converging to near-optimal 

solutions (best weights clustered at 0.5–3.0 lb intervals) and fewer outliers than AVOA, as 

also plotted in Figure 17. This stability is attributed to parameter tuning through the MSPA, 
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which mitigates premature convergence, a limitation observed in AVOA’s wider weight 

distribution (e.g., worst weight of 6204.354 lb vs. AAVOA’s 5981.962 lb). The stress 

distribution patterns (Figure 15) and statistical results collectively validate 

AAVOA’s superior robustness for truss optimization, particularly in scenarios demanding 

strict compliance with stress and displacement constraints. These findings position AAVOA 

as a preferred choice for complex structural optimization tasks requiring high precision and 

computational efficiency. 

 
Figure 14: Performance Comparison for the 120-bar Dome Truss 

 

  
Figure 15: The 10-bar Planar Truss Elemental Stress and Stress Ratio 

 



TUNED METAHEURISTIC ALGORITHMS FOR OPTIMAL DESIGN PROBLEMS … 

 

273 

  
Figure 16: The 10-bar Planar Truss Nodal Displacement and Displacement Ratio 

 
Table 6: Comparison of Statistical Results and Best Designs for the 10-bar Planar Truss 

 Algorithm 

Element Group AAVOA AVOA 

1 30.38928 30.26468 

2 0.100002 0.1 

3 23.24375 22.93433 

4 15.20868 15.53487 

5 0.1 0.133021 

6 0.559178 0.437553 

7 7.46777 7.426286 

8 21.18442 21.48981 

9 21.43914 21.49664 

10 0.100001 0.1 

Best Weight 5060.958 5070.249 

Worst Weight 5981.962 6204.354 

Mean 5206.486 5430.624 

STD 222.5627 386.6023 

 

 
Figure 17: The 30 Independent Runs for the 10-bar Planar Truss 

 

4.4. The 25-bar transmission tower 

The other case study in this structural optimization analysis examines a 25-member 

spatial truss system, illustrated schematically in Figure 18. The material density, valued at 
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0.1 lb/in³ (equivalent to 2767.990 kg/m³), is accompanied by a modulus of elasticity set at 

10,000 ksi (68,950 MPa). The arrangement of the twenty-five struts is subdivided into eight 

distinct groups. Within the framework of this benchmark tower truss, two specified load 

cases, detailed in Table 7, exert their respective influences. Stringent upper displacement 

bounds, fixed at 0.35 in (8.89 mm), are imposed uniformly across all nodal locations and 

dimensions. Axial stress constraints, outlined in Table 8, are variably specified across the 

categorized groups. The range of allowable cross-sectional areas spans from 0.01 in² to 3.4 

in² (equivalent to 0.6452 cm² to 21.94 cm²). 

 
Table 7: Loading Conditions for the 25-bar Tower. 

 Case 1 (kips (kN))  Case 2 (kips (kN)) 

Node PX PY PZ  PX PY PZ 

1 0.0 20.0 (89) -5.0 (22.25)  1 (4.45) 10.0 (44.5) -5.0 (22.25) 

2 0.0 -20.0 (89)  -5.0 (22.25)  0 10.0 (44.5) -5.0 (22.25) 

3 0.0 0.0 0.0  0.5 (2.225) 0.0 0.0 

6 0.0 0.0 0.0  0.5 (2.225) 0.0 0.0 

 

Table 8: Member Stress Limitation for the 25-bar Transmission Tower 

Element group Compressive stress limitations (ksi (MPa)) Tensile stress limitations (ksi (MPa)) 

1 A1 35.092 (241.96) 40.0 (275.80) 

2 A2 ∼ A5 11.590 (79.913) 40.0 (275.80) 

3 A6 ∼ A9 17.305 (119.31) 40.0 (275.80) 

4 A10 ∼ A11 35.092 (241.96) 40.0 (275.80) 

5 A12 ∼ A13 35.092 (241.96) 40.0 (275.80) 

6 A14 ∼ A17 6.759 (46.603) 40.0 (275.80) 

7 A18 ∼ A21 6.959 (47.982) 40.0 (275.80) 

8 A22 ∼ A25 11.082 (76.410) 40.0 (275.80) 

The comparative optimization results for the 25-bar transmission tower demonstrate the 

enhanced performance of the tuned AVOA (AAVOA) compared to the default AVOA. As 

evidenced in Table 9, AAVOA achieved a superior best weight of 545.18 lb versus AVOA's 

546.23 lb, along with a lower average weight (549.17 lb vs. 554.34 lb) and significantly 

reduced standard deviation (2.91 lb vs. 7.39 lb), indicating more consistent convergence 

behavior. Figure 19 visually reinforces these findings, showing AAVOA's tighter clustering 

of optimal solutions across multiple runs. The elemental stress distribution in Figure 20 

reveals that both algorithms maintained stresses within allowable limits, though AAVOA 

achieved this with 44.3% fewer structural analyses (4,800 vs. 8,625), highlighting its 

superior computational efficiency. This reduction in computational cost, coupled with 

improved weight optimization, makes AAVOA particularly valuable for large-scale 

structural design problems where both accuracy and efficiency are critical. 

The 30 independent runs depicted in Figure 22 provide deeper insight into the algorithms' 

stability, with AAVOA exhibiting narrower weight distribution (557.12 lb worst case vs. 

AVOA's 576.72 lb) and reduced solution variability. This enhanced reliability stems from 

the MSPA parameter tuning, which effectively balances exploration and exploitation during 

the optimization process. The cross-sectional area allocations in Table 9 show that AAVOA 

produced more material-efficient designs, particularly in critical element groups, while 
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maintaining stress ratios well below unity (Figure 20). These results collectively 

demonstrate that AAVOA not only achieves lighter structures but does so with 

greater reproducibility and lower computational overhead, making it a robust choice for 

practical transmission tower optimization where both performance consistency and resource 

efficiency are paramount. 

 

 
Figure 18: The 25-bar Transmission Tower 

 

 
Figure 19: Performance Comparison for the 25-bar Transmission Tower 
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Figure 20: The 25-bar Transmission Tower Elemental Stress and Stress Ratio 

 

  
Figure 21: The 25-bar Transmission Tower Nodal Displacement and Displacement Ratio 

 

Table 9: Comparison of Statistical Results and Best Designs for the 25-bar Transmission Tower 

  Algorithm 

Element groups  AVOA AAVOA 

1 A1  0.01 0.01015267 

2 A2 -A5  1.966856372 1.794516431 

3 A6 - A9  3.021088499 3.262170844 

4 A10 - A11  0.010000358 0.010000002 

5 A12 - A13  0.010079984 0.01 

6 A14 - A17  0.684519132 0.686016472 

7 A18 - A21  1.681583427 1.736271621 

8 A22 - A25  2.653002619 2.57190571 

Best Weight (lb)  546.2262918 545.1820801 

Worst Weight (lb)  576.7215432 557.1208098 

Average Weight (lb)  554.3397222 549.1723122 

Standard Deviation (lb)  7.390827195 2.914991611 

No. of Analyses  8625 4800 
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Figure 22: The 30 Independent Runs for the 25-bar Transmission Tower 

 

 

5. CONCLUSIONS 
 

This study employed a recently proposed framework, namely Multi-Stage Parameter 

Adjustment (MSPA), for enhancing two metaheuristic algorithms, including the African 

Vultures Optimization Algorithm (AVOA) and Particle Swarm Optimization (PSO), through 

systematic parameter tuning, demonstrating its efficacy in solving complex optimization 

problems with continuous variables. The proposed methodology integrates data generation, 

primary optimization, machine learning, and metaheuristic refinement to achieve superior 

performance across engineering and structural optimization benchmarks. By employing 

Extreme Latin Hypercube Sampling (XLHS) for exhaustive search space coverage and 

artificial neural networks (ANN) for predictive parameter tuning, MSPA significantly 

improved the convergence behavior and solution quality of metaheuristics such as PSO and 

AVOA. The results underscore the framework's versatility, with tuned algorithms 

outperforming their baseline counterparts in engineering problems and achieving lighter, 

more efficient designs in structural applications. Notably, the MSPA tuning reduced 

computational costs by up to 44.3% and 83.3% standard deviation while maintaining 

constraint satisfaction, highlighting MSPA's potential for real-world engineering design. 
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